Flowchart 2: Management of severe symptomatic hyponatraemia

Severe symptoms

- Seizures
- Drowsiness/coma
- Cardio-respiratory arrest

Moderately severe symptoms

- Nausea
- Confusion
- Headache

Osmotic demyelination syndrome (ODS)*

Over-rapid sodium correction can cause osmotic demyelination syndrome (ODS) resulting in serious neurological disability. Risk factors for ODS include:

- Chronic hyponatraemia
- Initial sodium <105mmol/L
- Concurrent hypokalaemia
- Alcoholism
- Malnutrition
- · Liver disease.

Does the patient satisfy both of the following

☑ Serum sodium <130mmol/L

☑ Severe or moderately severe symptoms (see *left*) that the Consultant in charge of the patient agrees is attributable to the patient's hyponatraemia and agrees requires urgent treatment as below

0 - 4 hours. Raise Na+ by 4-6mmol/L

- 1. Give hypertonic sodium chloride 1.8% IV 170ml IV. or equivalent, over 20 minutes within the first hour. Ensure it is given through a central line, or via a secure venous access in a large peripheral vein (N.B. peripheral administration of sodium chloride 1.8% is an unlicensed route). If administered via a large peripheral vein, monitor for extravasation.
- 2. Check serum sodium 1 hour later
- 3. Repeat as necessary, up to two repeat bolus infusions, to achieve rise of 4-6mmol/L in the first 4 hours

4-24 hours and beyond. Total rise 8-10mmol/L

- Rise not to exceed 8-10mmol/L in first 24 hours
- Start diagnosis-specific treatment
- Monitor sodium every 2 hours until rise is stable, then 6hourly, 12hourly and daily until hyponatraemia has resolved. Not to exceed 8mmol/L daily rise thereafter.

Exceeding recommended sodium correction risks permanent neurological impairment. Do not exceed the maximum rate of sodium correction:

- Normal risk patients: 10mmol/L/day
- Patients at high risk of ODS*: 8mmol/L/day

Close monitoring of neurological status, serum sodium concentration and fluid balance is required.

Monitoring

Monitor neurological status and fluid balance closely. Do not exceed maximum rate of sodium correction. All of this is best achieved in a HDU/ITU environment and escalation is advised in most cases.

Overcorrection of hyponatraemia

If the rise in sodium exceeds the limits (see *left*), there is a risk of ODS*. Use a glucose 5% infusion to reverse the excessive rise. Contact Clinical Biochemistry or Endocrinology for further advice.

***Administering sodium chloride 1.8%:**

A. Administration. 1.8% sodium chloride comes in 500ml bags. For safety, either:

- Use a volumetric pump or
- Remove 330ml prior to administration so there is no risk of giving an excessive dose.
- B. Concentration. In cases of significant hypervolaemia, it may be necessary to use 2.7% sodium chloride or higher – typically through central venous access - in order to reduce administration volume.
- C. Supply. Hypertonic sodium chloride can be sourced via the pharmacy dept during working hours. Out-of-hours, can be accessed from the Emergency Drug Cupboards in both UHC and UHA.